Flächenberechnungen mit Integralen

1. Berechne den Flächeninhalt, den die Funktion mit der x-Achse einschließt!

a)
$$f: x \mapsto x^2 - 9$$

b)
$$f: x \mapsto x^3 - 3x^2 + 2x$$

2. Berechne den Flächeninhalt zwischen Graph und x-Achse über dem angegebenen Intervall!

a)
$$f: x \mapsto 2x \cdot e^{x^2-4}$$
; [-1; 2]

b)
$$f: x \mapsto \sqrt{x} - x$$
; [0; 3]

3. Berechne den Inhalt der Fläche, die von den Graphen der beiden Funktionen eingeschlossen wird.

a)
$$f(x) = x^2 - 2x$$
 $g(x) = 4x - 5$

b)
$$f(x) = x^3 - 1$$
 $g(x) = x^2 + 2x - 1$

4. Bestimme den Flächeninhalt zwischen den Graphen der beiden Funktionen über dem angegebenen Intervall!

a)
$$f(x) = 2 - 0.5x^2$$
 $g(x) = 2x - 4$ [1; 4]

b)
$$f(x) = \ln x - 1$$
 $g(x) = e - x$ [1; e] (ein Schnittpunkt - nachdenken!)

c)
$$f(x) = \frac{1}{4}x^3 - \frac{3}{2}x^2 + x + 1$$
 $g(x) = x + 1$ [-6; 6]

5. Gegeben ist die Parabel mit dem Funktionsterm $g(x) = \frac{1}{4}x^2$. Berechne den Inhalt der Fläche, die vom Graphen G_g , der x-Achse sowie der Tangente an den Graphen im Punkt P(4|4) begrenzt wird