DARSTELLUNGSFORMEN VON EBENEN - LÖSUNG

Aufgabe 1.

Parameterform	ein Aufpunkt und zwei Richtungsvektoren (die in der Ebene liegen)
Normalenform	ein Aufpunkt und ein Normalenvektor (dieser steht senkrecht auf die Ebene)

Aufgabe 2.

Bestimmen Sie eine Ebene in Parameterform, Normalenform (Vektor- und Koordinatendarstellung), die durch folgende drei Punkte geht:

a)
$$A(1/2/-3)$$
, $B(-3/4/3)$, $C(1/1/\frac{1}{2})$.
 $E: \overrightarrow{X} = \begin{pmatrix} 1\\2\\-3 \end{pmatrix} + \lambda \begin{pmatrix} -3-1\\4-2\\3-(-3) \end{pmatrix} + \mu \begin{pmatrix} 1-1\\1-2\\\frac{1}{2}-(-3) \end{pmatrix} = \begin{pmatrix} 1\\2\\-3 \end{pmatrix} + \lambda \begin{pmatrix} -4\\2\\6 \end{pmatrix} + \mu \begin{pmatrix} 0\\-1\\3\frac{1}{2} \end{pmatrix}$

Die Richtungsvektoren können mit einem Faktor ($\neq 0$) multipliziert werden, so ergibt sich vereinfacht:

$$E: \overrightarrow{X} = \begin{pmatrix} 1\\2\\-3 \end{pmatrix} + \lambda \begin{pmatrix} -2\\1\\3 \end{pmatrix} + \mu \begin{pmatrix} 0\\-2\\7 \end{pmatrix}$$
$$\begin{pmatrix} -2\\1\\3 \end{pmatrix} \times \begin{pmatrix} 0\\-2\\7 \end{pmatrix} = \begin{pmatrix} 13\\14\\4 \end{pmatrix}, \text{ also } E: \begin{pmatrix} 13\\14\\4 \end{pmatrix} \circ \left(\overrightarrow{X} - \begin{pmatrix} 1\\2\\-3 \end{pmatrix}\right) = 0$$
bzw. $E: 13x_1 + 14x_2 + 4x_3 - 29 = 0$

b)
$$A(7/1/1)$$
, $B(5/-2/2)$, $C(4/3/0.5)$.
 $E: \overrightarrow{X} = \begin{pmatrix} 7\\1\\1 \end{pmatrix} + \lambda \begin{pmatrix} -2\\-3\\1 \end{pmatrix} + \mu \begin{pmatrix} -3\\2\\-\frac{1}{2} \end{pmatrix}$

Die Richtungsvektoren können mit einem Faktor ($\neq 0$) multipliziert werden, so ergibt sich vereinfacht:

$$E: \overrightarrow{X} = \begin{pmatrix} 7\\1\\1 \end{pmatrix} + \lambda \begin{pmatrix} -2\\-3\\1 \end{pmatrix} + \mu \begin{pmatrix} -6\\4\\-1 \end{pmatrix}$$
$$\begin{pmatrix} -2\\-3\\1 \end{pmatrix} \times \begin{pmatrix} -6\\4\\-1 \end{pmatrix} = \begin{pmatrix} -1\\-8\\-26 \end{pmatrix}, \text{ also } E: \begin{pmatrix} -1\\-8\\-26 \end{pmatrix} \circ \begin{pmatrix} \overrightarrow{X} - \begin{pmatrix} 7\\1\\1 \end{pmatrix} \end{pmatrix} = 0$$
bzw.
$$E: -x_1 - 8x_2 - 26x_3 + 51 = 0$$

c) Falls die drei Punkte auf einer Geraden liegen, lässt sich keine eindeutige Ebene angeben.

Aufgabe 3.

Finden Sie einen Punkt, der auf der Ebene $E_3: x_1 + 7x_2 + x_3 + 2 = 0$ liegt!

z.B.
$$x_1 = x_2 = 0 \Rightarrow x_3 + 2 = 0 \Rightarrow x_3 = -2$$
, also $P(0/0/-2)$.

Aufgabe 4.

- a) $E: x_2 = a; \quad a \in \mathbb{R}$ beliebig (für a = 0 ist E die x_1x_3 -Ebene.)
- b) $F: x_3 = 0$.
- c) Der Normalenvektor muss in der x_1x_2 -Ebene liegen: $G: a_1x_1+a_2x_2+a_3=0$ mit $a_1,a_2\in\mathbb{R}$, und $a_3\neq 0$ (für $a_3=0$ liegt die x_3 -Achse in der G).
- d) $H: a_1x_1 + a_2x_2 = 0 \text{ mit } a_1, a_2 \in \mathbb{R}.$

e)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
, also $E: \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \circ \begin{pmatrix} \overrightarrow{X} - \begin{pmatrix} -7 \\ 3 \\ 3 \end{pmatrix} \end{pmatrix} = 0$

Aufgabe 5.

- a) Das ist die x_2x_3 -Ebene.
- b) Die x_3 -Achse liegt in F. F ist die Winkelhalbierende des 1. Oktanten.
- c) G ist parallel zur x_1x_2 -Ebene (ist um 3 in x_3 -Richtung verschoben).
- d) H = F.

Aufgabe 6.

Genau wenn $a_4 = 0$ ist, stimmt die Gleichung, wenn man die Koordinaten des Ursprungs einsetzt:

$$a_1 \cdot 0 + a_2 \cdot 0 + a_3 \cdot 0 + \underbrace{a_4}_{0} = 0 + 0 + 0 + 0 = 0$$