Aufgaben zur Ableitung von Sinus- und Kosinus-Funktion - Lösungen

- Aufgabe 1: $f'(x) = \cos x$ Direkte Ableitung der Sinusfunktion.
- **Aufgabe 2:** $g'(x) = -\sin x$ Direkte Ableitung der Kosinusfunktion.
- Aufgabe 3: $h'(x) = 3 \cos x$ Faktorregel: Konstante 3 bleibt erhalten.
- **Aufgabe 4:** $k'(x) = -5(-\sin x) = 5\sin x$ Faktor und Ableitung von $\cos x$.
- Aufgabe 5: $f'(x) = 2\cos x 4\sin x$ Lineare Kombination, jede Ableitung einzeln.
- **Aufgabe 6:** $g'(x) = 7\cos x + 3\sin x$ Beachte das Vorzeichen beim Ableiten von $-\cos x$.
- Aufgabe 7: $h'(x) = \cos x \cos x \sin x \sin x = \cos^2 x \sin^2 x$ Produktregel: (uv)' = u'v + uv'.
- Aufgabe 8: $h'(x) = 2 \sin x \cdot \cos x$ $Kettenregel: (\sin^2 x)' = 2 \sin x \cdot (\sin x)'.$
- Aufgabe 9: $f'(x) = \cos(2x) \cdot 2 = 2\cos(2x)$ Kettenregel, innere Funktion 2x.
- Aufgabe 10: $g'(x) = -\sin(3x) \cdot 3 = -3\sin(3x)$ Kettenregel, innere Funktion 3x.
- Aufgabe 11: $h'(x) = 5\cos(4x) \cdot 4 2(-\sin(5x) \cdot 5) = 20\cos(4x) + 10\sin(5x)$ Lineare Kombination, jeweils Kettenregel.
- Aufgabe 12: $k'(x) = \cos(x^2) \cdot 2x = 2x \cos(x^2)$ Kettenregel, innere Funktion x^2 .
- Aufgabe 13: $f'(x) = \cos x \cos x \sin x \sin x = \cos^2 x \sin^2 x$ Produktregel, identisch zu Aufgabe 7.
- **Aufgabe 14:** $g'(x) = \cos x \cos(2x) \sin x \cdot \sin(2x) \cdot 2 = \cos x \cos(2x) 2\sin x \sin(2x)$ Produkt und Kettenregel (für $\cos(2x)$).
- Aufgabe 15: $h'(x) = (\sin(3x))' \cos(4x) + \sin(3x)(\cos(4x))'$ = $3\cos(3x)\cos(4x) - 4\sin(3x)\sin(4x)$ Produktregel, beide Faktoren benötigen Kettenregel.
- Aufgabe 16: $k'(x) = 3\sin^2 x \cdot \cos x$ $Kettenregel: (\sin^3 x)' = 3\sin^2 x \cdot (\sin x)'.$

- Aufgabe 17: $f'(x) = \cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} = \frac{\cos(\sqrt{x})}{2\sqrt{x}}$ Kettenregel, innere Funktion $\sqrt{x} = x^{1/2}$.
- Aufgabe 18: $g'(x) = -\sin(x^3 + 2x) \cdot (3x^2 + 2) = -(3x^2 + 2)\sin(x^3 + 2x)$ Kettenregel, Ableitung der inneren Polynomfunktion.
- Aufgabe 19: $h'(x) = \cos x \cos^2 x + \sin x \cdot 2 \cos x (-\sin x)$ = $\cos^3 x - 2 \sin^2 x \cos x$ Produktregel zwischen $\sin x$ und $\cos^2 x$; für $\cos^2 x$ Kettenregel.
- **Aufgabe 20:** $k'(x) = 2(\sin x + \cos x)(\cos x \sin x)$ *Kettenregel für das Quadrat und innere Ableitung* $(\sin x + \cos x)' = \cos x - \sin x$.