1. Entscheiden Sie jeweils, ob die Funktion achsensymmetrisch zur y-Achse, punktsymmetrisch zum Ursprung oder keines von beiden ist.

achsensymmetrisch punktsymmetrisch keines von beiden

$f_1: x \mapsto x^2 - 1$	Х		
$f_2: x \mapsto \frac{1}{5}x^3 - x$		Х	
$f_3: x \mapsto \frac{5}{x} + 2$			X
$f_4 \colon x \mapsto 0.01x^2 + x$			Х
$f_5 \colon x \mapsto x^{-2} + 1$	х		
$f_6: x \mapsto \frac{1}{x-2}$			Х
$f_7: x \mapsto \cos(x) - 1$	Х		
$f_8: x \mapsto x \cdot \sin(x)$	Х		
$f_9: x \mapsto \frac{\cos(x)}{x}$		Х	

- 2. Gegeben sind die Punkte P(2|3) und Q(-1|-2). Finden Sie jeweils den Term einer Funktion, deren Graph P bzw. Q enthält und...
 - a) ...achsensymmetrisch zur y-Achse ist.

z.B. $f(x) = x^2$: G_f ist achsensymmetrisch zur y-Achse;

$$f(2) = 4$$
, also erfüllt z.B. $f_1(x) = x^2 - 1$ die Bedingung $P \in G_{f_1}$

$$f(-1)=1$$
, also erfüllt z.B. $f_2(x)=-2x^2$ die Bedingung $\mathbf{Q}\in G_{f_2}$

b) ...punktsymmetrisch zum Ursprung ist.

z.B. $g(x)=x^3$: G_g ist punktsymmetrisch zum Ursprung;

$$g(2)=8$$
, also erfüllt z.B. $g_1(x)=\frac{3}{8}x^3$ die Bedingung $\mathbf{P}\in G_{g_1}$

$$g(-1)=-1$$
, also erfüllt z.B. $g_2(x)=2x^3$ die Bedingung P $\in G_{g_2}$

- c) ...keine dieser Symmetrien aufweist.
 - z.B. $h(x) = x^2 + x$: G_h hat keine der beiden Symmetrien;
 - h(2) = 6, also erfüllt z.B. $h_1(x) = x^2 + x 3$ die Bedingung $P \in G_{h_1}$
 - h(-1)=0, also erfüllt z.B. $h_2(x)=x^2+x-2$ die Bedingung $\mathbf{Q}\in \mathcal{G}_{h_2}$
- 3. Die folgenden Rechnungen enthalten jeweils einen Fehler. Finden Sie ihn und führen Sie die Symmetrieprüfung korrekt durch.
 - a) $f(x) = x^2 + 5x$;

$$f(-x) = -x^2 - 5x = -(x^2 + 5x) = -f(x) \Rightarrow \text{punktsymm. zum Ursprung}$$

$$f(-x) = (-x)^2 - 5x = x^2 - 5x \neq \pm f(x) \Rightarrow$$
 keine Symmetrie

b) $g(x) = \frac{\cos(x)}{x}$;

$$g(-x) = \frac{\cos(-x)}{-x} = \frac{-\cos(x)}{-x} = \frac{\cos(x)}{x} = g(x) \Rightarrow \text{achsensymm. zur y-Achse}$$
$$= \frac{\cos(x)}{-x} = -\frac{\cos(x)}{x} = -g(x) \Rightarrow \text{punktsymm. zum Ursprung}$$

c) $h(x) = 2x^3 + 3x - 4$;

$$h(-x) = 2(-x)^3 + 3(-x) - 4 = -2x^3 - 3x - 4 = -h(x) \Rightarrow \text{ punktsymm. zur y-Achse}$$

 $\neq \pm h(x) \Rightarrow$ keine Symmetrie

$$-h(x) = -2x^3 - 3x + 4$$